Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
BMC Med Inform Decis Mak ; 22(1): 132, 2022 05 14.
Article in English | MEDLINE | ID: covidwho-1846831

ABSTRACT

BACKGROUND: The healthcare sector poses many strategic, tactic and operational planning questions. Due to the historically grown structures, planning is often locally confined and much optimization potential is foregone. METHODS: We implemented optimized decision-support systems for ambulatory care for four different real-world case studies that cover a variety of aspects in terms of planning scope and decision support tools. All are based on interactive cartographic representations and are being developed in cooperation with domain experts. The planning problems that we present are the problem of positioning centers for vaccination against Covid-19 (strategical) and emergency doctors (strategical/tactical), the out-of-hours pharmacy planning problem (tactical), and the route planning of patient transport services (operational). For each problem, we describe the planning question, give an overview of the mathematical model and present the implemented decision support application. RESULTS: Mathematical optimization can be used to model and solve these planning problems. However, in order to convince decision-makers of an alternative solution structure, mathematical solutions must be comprehensible and tangible. Appealing and interactive decision-support tools can be used in practice to convince public health experts of the benefits of an alternative solution. The more strategic the problem and the less sensitive the data, the easier it is to put a tool into practice. CONCLUSIONS: Exploring solutions interactively is rarely supported in existing planning tools. However, in order to bring new innovative tools into productive use, many hurdles must be overcome.


Subject(s)
COVID-19 , Pandemics , Ambulatory Care , COVID-19/prevention & control , Humans , Models, Theoretical , Pandemics/prevention & control , Public Health
2.
BMC Health Serv Res ; 21(1): 780, 2021 Aug 07.
Article in English | MEDLINE | ID: covidwho-1840966

ABSTRACT

BACKGROUND: Vaccines are an important tool to limit the health and economic damage of the Covid-19 pandemic. Several vaccine candidates already provided promising effectiveness data, but it is crucial for an effective vaccination campaign that people are willing and able to get vaccinated as soon as possible. Taking Germany as an example, we provide insights of using a mathematical approach for the planning and location of vaccination sites to optimally administer vaccines against Covid-19. METHODS: We used mathematical programming for computing an optimal selection of vaccination sites out of a given set (i.e., university hospitals, health department related locations and general practices). Different patient-to-facility assignments and doctor-to-facility assignments and different constraints on the number of vaccinees per site or maximum travel time are used. RESULTS: In order to minimize the barriers for people to get vaccinated, i.e., limit the one-way travel journey (airline distance) by around 35 km for 75% of the population (with a maximum of 70 km), around 80 well-positioned facilities can be enough. If only the 38 university hospitals are being used, the 75% distance increases to around 50 km (with a maximum of 145 km). Using all 400 health departments or all 56 000 general practices can decrease the journey length significantly, but comes at the price of more required staff and possibly wastage of only partially used vaccine containers. CONCLUSIONS: In the case of free assignments, the number of required physicians can in most scenarios be limited to 2 000, which is also the minimum with our assumptions. However, when travel distances for the patients are to be minimized, capacities of the facilities must be respected, or administrative assignments are prespecified, an increased number of physicians is unavoidable.


Subject(s)
COVID-19 , Vaccines , COVID-19 Vaccines , Germany , Humans , Pandemics , SARS-CoV-2 , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL